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Abstract
In order to analyze the accuracy of a fixed, finite-dimensional approximation space which
is not uniform over its domain Q, we define approximation error map, a description of
how the error is distributed over 0-not for a single test function but for a general class
of such functions. We show how to compute such a map from the best approximations
to an orthonormal basis of the target function space.

1 Introduction
The expected accuracy of a finite-dimensional approximation space (e.g. a polynomial
spline space, or a finite wavelet decomposition) will often vary over its domain Q. Indeed,
adaptive-resolution schemes are based on the premise that refining the element grid in
a particular region of Q will improve the approximation accuracy in that region.

. Knowledge of how the expected approximation error varies over the domain Q is
obviously relevant to the evaluation of an approximation space, and to the tuning of knot
locations, grid geometry, refinement thresholds and other parameters. Towards that goal,
we introduce the concept of approximation error map, a description of how the error is
distributed over P-not for a single test function, but for all functions in some specified
space F. We then show how to compute such a map from the best approximations to
an orthonormal basis of F.

1.1 Notation and definitions

Let F and A be two fixed, finite-dimensional vector spaces, not necessarily disjoint, of
functions defined on some domain Q with values in R. Let 1"11 be a vector semi-norm
for the space A + F. For any function f E F, we define its best approximation as the
function fA E A that minimizes the error If - fA1

We refer to A and F as the approximation and gauge spaces, respectively. We assume
that the 11.11-balls in the subspace A are strictly convex, ensuring that the best approx-
imation always exists and is unique. Since (caf)A = a(fA) and Iaf 11 = Jal If 1 for any
real constant a, we can confine the analysis of approximation errors to the unit F-sphere

I F={fEFY: I1fI1=1}.

1.2 Global error measures

Usually, the effectiveness of the approximation space A is measured by a single number

f fA -either for the worst-case function f E F 1, or by the root-mean-power average
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over all functions f e -F1

1 /P
0>ety f Allp dfj / 1 dfj ]11

Note that integrals are taken over the function space Tj, not over the domain Q.
The worst-case error is the limit

= lim o,, = sup{ If-si fEi }. (1.2)

1.3 Uniform approximation spaces

A global error measure such as/,t or Up,A,.' is generally sufficient when all points of Q
are equivalent with respect to the quality of approximation. More formally, we say that
a normed function space X is uniform over Q if there is some family 4 of maps from Q
to Q that preserves X and its norm 11'11, and which can take any point of Q to any other
point. A natural example is Yd,, the set of all harmonic functions on the sphere Sd of a
given maximum order n, with any Lp norm; this space is preserved by the family of rigid
rotations of Sd. Obviously, if both A and Y- are uniform under the same family 4), then
A approximates Y equally well at all points of Q. (Of course, for any specific function
f E YF, the error f - fA will usually vary over Q.)

There are however many important approximation spaces A which are not uniform. A
familiar example is the space of polynomials or trigonometric series defined on a bounded
region Q C R'. Another example is the space of the piecewise polynomial splines of fixed
order and continuity defined over a fixed grid G. Wavelet spaces truncated to a fixed
order provide yet another example. For such spaces, the expected approximation error
usually varies over Q, even when the functions to be approximated are drawn from a
uniform space.

2 Approximation error map
We define the root mean power approximation error map of .F by A as the function
orp,A,T of Q to R defined by

olp,A,(x) = [J If(x) -f'(x)IP df]j/p [J 1df] /p (2.1)

As before, integrals are taken over the function space F1, not over the domain Q2. Note
that op,A,yF(x) is not the error for a specific function f, but rather the average error at the
point x for a generic function f in YF1. As a limiting case, we define also the worst-case
approximation error map of $' by A as the function

PIA,yF(x) = lim O'p,A,.F(X) = sup{ ff(x)-fA(x)[: f EJF}. (2.2)
p--+oo

Again note that the supremum is taken over F1, not over Q, and that kuA,.-(x) is not
the error at x for a single function f, but rather the error for the function f in F1 that
is worst for that particular x. A plot of op,A,T(x) or IIA,.F(x) over f should show at a
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glance how well A approximates P in different parts of the domain, for all functions of
FT at once.

3 Computing the approximation error map

Formulas (2.1)-(2.2) become more tractable when the function metric is the L2 norm

I[f I = [f If(x)12 dx] 1/2 defined on the space A+.F-in other words, when If[12 - (f f)
where (f, g) = f. f(x)g(x) dx. We make this assumption in the remainder of this section.
In that case, fA is a linear function of f, namely the orthogonal projection of f onto the
subspace A; and AA,yF is simply [sin 01, where 0 is the angle between the two subspaces.

3.1 Explicit formula for o,

Let us suppose that A and F are disjoint, and let 0,.-., ¢, be an orthonormal basis for
.F. Let ai = Oi4 for all i, and let ei = Oi - ai. We will call 0, a, and 6 the gauge, approx-
imation, and error bases, respectively (even though ai and ei need not be independent).
The average error map up,A,y(x) can be expressed in terms of the error basis

U[IJSX CAi A W• I A p cl 1'P I •S_ dc] 1/p
Up,A,y(X) --- [i (i~ii (x) - c )A (x) "d [ 1 /

1i P li/p

= -•n a- >3cici(x) dc (3.1)

where A, = 27ri/F(Q) is the measure of S'- 1 .

Note that -ci ciei(x) is the dot product of the unit vector c = (Cl,C 2,... ,cn) and
the vector E(x) = (61(X),6 2 (x),. . . , -n(x)); it depends only on IE(x)l and on the angle 9
between those two vectors, and is constant over the slice of S'- 1 where 0 is constant.
The measure of that slice is An- 1 Isin 9 1n-1 dO. Therefore,

P'(,A(x) -[- fj IE(x)I Icos01p An,- sin 01-1 dO] ip

xIAn- f" cos01p isinOn- 1 dO/

= e~)I [ (r(n))2r(P+1) 1/(.2e Wr 2 )(3.2)
V/r r(-n2 )rC(p 2 n)

3.2 Explicit formula for p

The worst-case error map PA," can be obtained by taking p to the limit +oo in for-
mula (3.2), or directly, as follows. From formula (2.2),

ILA,y(x) = sup (zcii) (x)- ( ci)A(x) W ciqi--1}
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Ssup{ :Ec (x) C E S' 1  (3.3)

By considering the effect of negating each cj, it is easy to see that the absolute value in
the last formula is superfluous, i.e.

lt,,-(X) = suP{Ecii(X): cCSn-}. (3.4)

Formula (3.4) is the supremum of a linear functional with coefficients Ei(x) over the
sphere Sn- 1; which is achieved at the point c*(x) of Sn- 1 that is collinear with the

coefficient vector, namely c*(x) = si(x)/ VE,(Fj (x)) 2, whence

bLA,y(x) = Zc*(x)6i(x) = E(_j(x))2 = Ir(x)I. (3.5)

In summary, the error maps op,A,y=(x) and IA,.F(x) (which differ only by a constant
factor) can be derived from the approximation errors Ei(x) for each basis function Oi(x),
combined with the norm IE(x)l = V/Ei(ci(x))2.

4 Practical considerations

4.1 Connection between the function and point norms

The maps (2.2) and (2.1) will be more useful when there is a direct connection between
the function-space norm I1'-1 and the absolute value I, h used to compare functions values
at a given point x, as in formulas (2.1)-(2.2)-namely, when

IfIL= [•/fx) dx] . (4.1)

More generally, the function values at x could be compared with a norm which could
depend on x, or take derivatives of the function into account. We will not pursue such
extensions in this paper.

Connection (4.1) is not strictly necessary-at least when A and .F are finite dimen-
sional. However, it may not make much sense to choose the approximant fA so as to
minimize the function norm 11'11, and then analyze its accuracy using some other norm
., if there is no connection between the two.

Considering that the error map is relatively easy to compute when 1'1 is the L2
norm (see Section 3), and probably intractable otherwise, the connection expressed by
formula (4.1) will probably hold in practice (with q = 2).

4.2 Choice of the gauge space

The approximation error map depends not only on the space A, but also on the gauge
space 97 and the error metric IIf 1. Therefore, the choice of Y and j'Il must be guided by
the intended application.

For example, suppose the domain Q is the circle or the sphere Sd, and the application
does not specify a preferred direction. Then we should choose Y and I."j so that they
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are invariant under rotations of Q-otherwise, any inhomogeneity in them may produce
irrelevant artifacts in the error map. Also, if the functions to be approximated are expec-
ted to be smooth, and/or only their low frequencies are important, then the functions
in F should be smooth too. A natural choice for F, in this case, are the circular or
spherical harmonics up to a certain maximum order, and the metric j1"1[ can be simply
the Lq norm over the sphere Sd.

4.3 Essential dimensions

We will argue next that, for the L2 function norm, the "interesting" part of the error
map is determined by two "essential" subspaces P' C F and A' C A, which are disjoint
and such that dim F' > dim A' .

First, if the spaces A and F have a non-trivial intersection V, and we split a function
f E F into its components g E V and h 1 V, we find that fA = g + hA; and that hA

is itself orthogonal to V. Therefore, we can confine our attention to the complements F'
and A' of V relative to A and F, which are disjoint.

Let us then suppose that A and F are disjoint. If dim.F < dim A, let A' C A be the
projection of F onto A, which contains all optimum approximants. Obviously, for any
function f, we have fA = fA' so we can confine our attention to the space A', which is
still disjoint from F and satisfies dim F> dim A'.

5 Examples
5.1 Trigonometric splines on the circle

Consider the approximation of a function by continuous trigonometric splines, of max-
imum frequency r = 2, defined on a partition T of S1 into n = 8 unequal intervals. This
space coincides with the space pr,2 [T] of non-homogeneous polynomial splines of R 2 ,

restricted to S1 , with Co continuity constraints [2].
For the gauge space F, we will use the family of trigonometric series truncated after

a suitable maximum frequency s > r, which coincides with the space of general spherical
polynomials (not splines) pS,2 for some s > r. The norm is [If[I = V(,f) where
(f, g) = fs f(O)g(O) dp. Specifically, T consists of the intervals I0 through 17 shown
below

to I0 tl I1 t 2 12 t 3 13 t 4 14 t 5 15 t 6  16 t 7  17 t8

7r 37r 77r 9itir 3r0 24 8 8 4--27r

Within each interval Ij, the generic approximant is a linear combination gj of the Fourier
basis functions qi, for -r < i < +r. These partial functions are constrained to be
continuous across interval boundaries; i.e. gj-I(tj) = gj(tj) for each j in 0,.... , n - 1}
(where all indices are taken modulo n). These equations turn out to be independent,
therefore the dimension of A is n(2r + 1) - n = 32.

For the gauge space F, we will use the trigonometric polynomials of some order
s > r, i.e. linear combinations of the basis functions Oi for -s < i < +s, where ji(O) =
(1/Vx/) sin(iO+7r/4). As observed in Section 4.3, we can ignore the subspace A' =FnA of
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A generated by -r..., Or. Moreover, in order to use all of A, we need dim.F > dim A-
i.e., 2s+1 > 32, implying s > 16. See Figure 1. The resulting error map 1uA,=(x) is shown
in Figure 2.

phi(t)
alpha(t) -

0.5 - " N', ....... eps(t)

i - o - . : ".' " N

-0.5 - \ \-N K........................

--

to tl 1 t3 t4 t5 t6 t7 10

I f •_• ."i ' ' \phi(t) .........

FG1Teuto(afreu ofalpha(t)
0.5 eps(t)

-4 0
-0.5

to tl 2 Q 3 t4 C5 t6 t7 t8

FIG. 1. The functions foi(t), i(t), and f c n (C) tonoselected values of i.

1.5 x -

i=-4 1

0.5

0

to t] tC t3 W4 t5 t6 t7 t8

FIG. 2. The error map PaY(t) for continuous (Co) trigonometric splines on eight un-

equal intervals, tested with the space of trigonometric polynomials of order 16.

5.2 Spherical splines on a uniform mesh

For the examples in this section, the approximating functions are spherical polynomial
splines [1, 2, 3, 4] of continuity class zero and various degrees, homogeneous and non-
homogeneous, defined on some triangulation T of the sphere S2.

Figure 3 (left) shows the approximation error map AtA,y(P) for the homogeneous
spherical spline space A = 7-=5[T]/S 2 , which has dimension 252. In Figure 3 (right), A
is the non-homogeneous spherical spline space P04[T] /S2, which has dimension 254. In
both cases, the gauge space F is the family Y25 of spherical harmonics of maximum order
15, which has dimension 256. The intersection F f 7-05 [T]/S 2 is the family of spherical
harmonics of odd order < 5 (dimension 21), whereas F fl P•[T]/S 2 is the full harmonic
space Y42 (dimension 25). The level curves are logarithmically spaced, five per decade.
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FIG. 3. Error maps PLA,F(P) for the approximation spaces A = 7-H5[T]/S 2 (left) and
A = 04 [T]/$ 2 (right). The maximum errors are 13.5 and 9.37, respectively.

5.3 Spherical splines on a variable mesh

In the following examples, the approximating functions are again spherical polynomial
splines, but the vertices of the triangulation T have been displaced so as to create regions
of very different sizes (still with icosahedral topology).

Figure 4 (left) shows the approximation error map gA,,(p) for the space of homogen-
eous spherical splines A = 'H'[T]/S 2, which has dimension 252. In Figure 4 (right), A
is the space of non-homogeneous spherical splines P4[T']/S 2 , which has dimension 254.
In both cases, the gauge space F is the family y2 of spherical harmonics of maximum
order 15, which has dimension 256, as before. The level curves are logarithmically spaced
(5 per decade).

6 Conclusion

Asymptotic error analysis is not very helpful when comparing two fixed finite-dimensional
approximation spaces of similar dimensions-such as a spline space against a wavelet
space, or two spline spaces with different grid geometries. Approximation errors com-
puted for individual test functions are difficult to interpret and may not be representative
of the average or worst cases. We expect that the approximation error map will be a use-
ful analysis tool for those situations-especially for domains that admit natural uniform
target spaces, such as spheres (including the circle) and tori.
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CNPq (PRONEX-SAI).
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FIc. 4. Error maps ,aA,,(P) for the approximation spaces A = Ho[T]/S 2 (left) and
A = P04 [T]/S 2 (right). The maximum errors are' 17.1 and 17.9, respectively.
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